
CDS 131 Homework 1: Linear Dynamical Systems

Winter 2025

Due 1/13 at 11:59 PM

Instructions

This homework is divided into three parts:

1. Optional Exercises: the exercises are entirely optional but are recommended to be completed before
looking at the problems. They consist of easier, more computational questions to help you get a feel for
the material.

2. Required Problems: the problems are the required component of the homework, and might require more
work than the exercises to complete.

3. Optional Problems: the optional problems are some additional, recommended problems - some of these
might go a little beyond the standard course material.

All you need to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 Systems of First Order Equations

1. Show that an n’th order linear ODE,

dnx

dtn
+ an−1

dn−1x

dtn
+ ...+ a1

dx

dt
+ a0x = 0, ai ∈ R, (1)

can be rewritten as a system of n, first order differential equations of the form,

ż = Az, (2)

where z ∈ Rn and A ∈ Rn×n. This tells us that it’s sufficient to examine linear systems of first order
ODEs in order to reach conclusions about linear n’th order ODEs.

2. Show that an n’th order recurrence,

x[k + n] + an−1x[k + n− 1] + ...+ a1x[k + 1] + a0x[k] = 0, (3)

can be rewritten as a system of n, first order recurrences of the form,

z[k + 1] = Az[k], (4)

where z ∈ Rn and A ∈ Rn×n. This tells us that it’s sufficient to examine linear systems of first order
recurrences in order to reach conclusions about linear n’th order recurrences.

1.2 Practice with Linear ODEs

1. Determine the state transition matrix for the linear system ẋ(t) = A(t)x(t), where

A(t) =

[
0 0
t 0

]
, (5)

by either (a) directly solving differential equations or (b) using the Peano-Baker series.
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1.3 Practice with Linear Recurrences

1. Determine the state transition matrix for the discrete-time recurrence, x[k + 1] = A[k]x[k], where

A[k] =

[
−1 2
0 1

]
. (6)

Hints: (1) How does the state transition matrix simplify in the case where A is constant? (2) Use the
eigendecomposition of A to more easily compute Ak.

2 Required Problems

2.1 Properties of Piecewise Continuous Functions

This week, we introduced the class of piecewise continuous functions as a class of signals for continuous-time
systems. In this problem, we’ll prove some basic properties of this function class.

1. Let I ⊆ R be a compact interval. Show that PC(I,Rn) forms a vector space over R under the operations
of function addition and scalar multiplication. Hint: prove it is a subspace of another function space
to make your life a little easier!

2. Let I,K ⊆ R be compact intervals. Show that any f ∈ PC(I,R) must be bounded above on I ∩K,

sup
t∈I∩K

f(t) < ∞. (7)

3. Let I ⊆ R be a compact interval and ∥·∥ be an arbitrary norm on Rn. Show that the supremum norm,

∥f∥∞ = sup
t∈I

∥f(t)∥ , (8)

is finite for all f ∈ PC(I,Rn). Then, prove that ∥·∥∞ makes PC(I,Rn) into a normed vector space.

4. Is PC(I,Rn) a Banach space with respect to the supremum norm ∥·∥∞, ∥f∥∞ = supt∈R ∥f(t)∥?
Provide a proof or a counterexample.

2.2 Transition Matrix Under Change of Variables

Consider a continuous-time linear, time-varying system representation (A(·), B(·), C(·), D(·)),

ẋ(t) = A(t)x(t) +B(t)u(t) (9)

y(t) = C(t)x(t) +D(t)u(t). (10)

1. Consider an invertible linear transformation T ∈ Rn×n and a corresponding change of variables, z = Tx.
Identify the system representation (Â(·), B̂(·), Ĉ(·), D̂(·)) for which solutions to,

ż(t) = Â(t)z(t) + B̂(t)u(t) (11)

ŷ(t) = Ĉ(t)z(t) + D̂(t)u(t) (12)

satisfy z(t) = Tx(t) and ŷ(t) = y(t) for all initial conditions x0 and Tx0 and piecewise continuous input
signals u(·). Conclude that the input to output behavior of the system does not depend on changes of
state coordinates.

2. Write the state transition matrix Φ̂(t, t0) of the transformed system in terms of the state transition
matrix Φ(t, t0) of the original system and the transformation T .

3. Does the relation you derived in part (2) also hold for a discrete-time system representation? Explain
why or why not.
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2.3 An Inverse Initial Value Problem

We know that Φ(t, t0) is the solution to the initial value problem Ẋ(t) = A(t)X(t), X(t0) = I. In this
problem, we’ll find out what Φ(t0, t) corresponds to.

1. Consider a continuously differentiable, matrix-valued function M(·) : R → Rn×n. Suppose for all t ∈ R,
M(t) is nonsingular. Determine an expression for d

dt [M
−1(t)] in terms of Ṁ(t) and M−1(t).

2. Now, consider a matrix A(·) ∈ PC(R,Rn×n). Find an expression for the derivative ∂
∂τΦ(t, τ) of the

state transition matrix Φ with respect to A(·), in terms of Φ(t, t0) and A(t). You may assume the
derivative is being taken at a point where A(·) is continuous.

3. Prove that Φ(t0, t) is the unique solution of the matrix initial value problem,

Ẋ(t) = −X(t)A(t), X(t0) = I. (13)

2.4 The Jacobi-Liouville Formula

This week, we showed that the state transition matrix is always invertible. Here, we’ll provide another proof
of this by means of the Jacobi-Liouville formula, which explicitly provides a formula for the determinant of
the state transition matrix. In particular, the Jacobi-Liouville formula is,

detΦ(t, t0) = exp

(∫ t

t0

tr(A(τ))dτ

)
. (14)

1. Prove that, for M ∈ Rn×n and ϵ ∈ R, there exists a continuous function R : R → R for which

det(I + ϵM) = 1 + ϵ tr(M) +R(ϵ) and lim
ϵ→0

R(ϵ)

ϵ
= 0. (15)

Hint: consider working with eigenvalues.

2. Using the determinant formula from (1), show that

d

dt
det[Φ(t, t0)] = tr(A(t)) det[Φ(t, t0)]. (16)

Hint: Work with the limit definition of the derivative. If you use a Taylor approximation, be rigorous
about your use of the remainder term.

3. Conclude the Jacobi-Liouville formula. Using the Jacobi-Liouville formula, provide a proof that Φ(t, t0)
is invertible for all (t, t0) ∈ R× R.

2.5 A Special State Transition Matrix

Consider a piecewise continuous matrix A ∈ PC(R,Rn×n), and let Φ denote the state transition matrix of
ẋ(t) = A(t)x(t). If for every (τ, t) ∈ R× R, one has,

A(t)

(∫ t

τ

A(η)dη

)
=

(∫ t

τ

A(η)dη

)
A(t), (17)

prove using the Peano-Baker series that,

Φ(t, τ) = exp

(∫ t

τ

A(η)dη

)
=

∞∑
k=0

1

k!

(∫ t

τ

A(η)dη

)k

. (18)

Using this result, calculate the state transition matrix associated to the matrix,

A(t) =

[
0 0
t 0

]
. (19)
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3 Optional Problems

3.1 Causal & Noncausal Maps

One can represent the input/output relationship of a system for a fixed initial time and initial state with
a function H : T × U → Y . That is, one has y(t) = H(t, u(·)) for any time t and admissible input u(·).
In this problem, we’ll determine definitions for causality, linearity, and time-invariance of an arbitrary map
H : T × U → Y between a time set T , a set of input signals U , and a set of output values Y .

1. Given an arbitrary map H : T ×U → Y , formulate a definition of time-invariance for H. Formulate a
definition of causality. Formulate a definition of linearity. Hint: for causality, think about the restriction
of a signal to a certain time interval.

2. Let’s put our definitions to the test. In each of the following cases, determine whether the system is
causal/time-invariant/linear. Use your best judgment to identify the time set and input and output
spaces in each case.

(a) Consider a discrete-time system with I/O description y[k] = c1u[k + 1] + c2, where c1, c2 ∈ R. Is
this system causal? Is it time-invariant? Is it linear?

(b) Consider a continuous-time system with I/O description y(t) = u(t− τ), where τ ∈ R is fixed and
positive. Is this system causal? Is it time invariant? Is it linear?

(c) Consider a continuous-time system with I/O description,

y(t) =

{
u(t) t ≤ τ

0 t > τ,
(20)

where τ ∈ R is fixed. Is this system causal? Is it time-invariant? Is it linear?

(d) Consider a continuous-time system with I/O description,

y(t) = min{u1(t), u2(t)}, (21)

where u(t) = [u1(t);u2(t)]
⊤ is the system input. Is this system causal? Is it time-invariant? Is it

linear?

3.2 Solution of a Matrix Differential Equation

Let A1(·), A2(·), and F (·) be elements of PC(R,Rn×n). Let Φi be the state transition matrix of ẋ(t) =
Ai(t)x(t) for i = 1, 2. Show that the solution of the matrix differential equation:

Ẋ(t) = A1(t)X(t) +X(t)A⊤
2 (t) + F (t), X(t0) = X0, (22)

is given by,

X(t) = Φ1(t, t0)X0Φ
⊤
2 (t, t0) +

∫ t

t0

Φ1(t, τ)F (τ)Φ⊤
2 (t, τ)dτ. (23)

Is this the unique solution of the matrix differential equation? Back up your answer with a proof or disproof.
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