
CDS 131 Homework 3: Transforms & Stability in State Space

Winter 2025

Due 1/27 at 11:59 PM

Instructions

This homework is divided into three parts:

1. Optional Exercises: the exercises are entirely optional but are recommended to be completed before
looking at the problems. They consist of easier, more computational questions to help you get a feel for
the material.

2. Required Problems: the problems are the required component of the homework, and might require more
work than the exercises to complete.

3. Optional Problems: the optional problems are some additional, recommended problems - some of these
might go a little beyond the standard course material.

All you need to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 Transforms & Transition Matrices

The Laplace transform offers yet another way of computing the state transition matrix. For a continuous-
time, LTI representation (A,B,C,D), the matrix exponential is computed exp(At) = L−1[(sI − A)−1)](t),
for all t ≥ 0. In this problem, we’ll consider an analogue in discrete-time, and use both the continuous and
discrete formulas to compute some transition matrices.

1. Show that the state transition matrix of a discrete-time, LTI representation (A,B,C,D) is computed,

Ak = Z−1[z(zI −A)−1][k], ∀k ≥ 0. (1)

2. Using the transform formulas, compute the continuous and discrete-time transition matrices associated
to the matrix,

A =

[
0 1
−1 −2

]
. (2)

Comment on the benefits and drawbacks of this method of computing the transition matrix. You may
use a symbolic calculator to compute the inverse of (sI −A).

1.2 Transfer Functions & Change of Basis

Consider a linear, time-invariant system representation (A,B,C,D). Recall that under a change of state
coordinates, z = Tx, the representation transforms to (TAT−1, TB,CT−1, D). Does the transfer function
associated to the system representation change under a change of state coordinates? Provide a proof or
counterexample to back up your answer.
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1.3 Analytic Functions

Recall that a given function f : Ω → C, where Ω ⊆ C is open in C, is an analytic function if it is (complex)
differentiable in a neighborhood of every point of C. For each of the scalar functions of s ∈ C,

f1(s) =
1

s
, f2(s) = es, f3(s) =

(s− 1)

(s+ 1)(s− 1)(s+ 2)
, G(s) = C(sI −A)−1B, (3)

determine the largest subset of C on which the function is analytic.

2 Required Problems

2.1 A Simple SISO Transfer Function

1. Consider a continuous-time SISO, LTI system representation (A,B,C,D),

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1

 B =


0
0
...
0
1


C =

[
c0 c1 . . . cn−2 cn−1

]
D = 0,

(4)

Show that the transfer function of such a system is computed,

Ĥ(s) =
cn−1s

n−1 + cn−2s
n−2 + ...+ c1s+ c0

sn + an−1sn−1 + ...+ a1s+ a0
. (5)

2. Let c(s) = cn−1s
n−1 + ...+ c0 and d(s) = sn + ...+ a0. If s0 satisfies c(s0) = 0 and d(s0) ̸= 0, show for

u(t) = u0e
s0t, u0 ∈ R, the zero-state response of the system does not contain a term involving es0t.

3. Suppose s0 is not an eigenvalue of A and that c(s0) = 0. Show that the matrix,[
A− sI B

C D

]
, (6)

is singular at s = s0. Hint: determinant.

2.2 A Skew-Symmetric Stability Condition

Consider the input-free linear, time-varying system ẋ(t) = A(t)x(t), where A(·) ∈ PC(R,Rn×n). Show that
if A(t) is skew-symmetric for all t ∈ R (A(t) = −A⊤(t)), then xe = 0 is a Lyapunov stable equilibrium point.

2.3 Robustness of Exponential Stability

In this problem, we’ll show that exponential stability is robust under small perturbations.

1. (⋆ Hard—you can skip this subproblem if you can’t find a solution after giving it some thought)
Consider a family of polynomials parameterized by t,

f(s, t) = an(t)s
n + ...+ a1(t)s+ a0(t), (7)

where each ai : R → R is continuous. Prove there exist continuous functions λi : R → C, i = 1, ..., n,
such that for all t0 ∈ R, each λi(t0) corresponds to a root of f(s, t0).

2. Prove there exists a continuous function spec : Rn×n → Cn, mapping a matrix A ∈ Rn×n to a vector
containing its eigenvalues.
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3. Let A ∈ Rn×n. Consider the perturbed systems,

ẋ(t) = (A+∆)x(t), x[k + 1] = (A+∆)x[k], (8)

where ∆ ∈ Rn×n. Suppose each system is globally exponentially stable for ∆ = 0. In each case, prove
there exists an M > 0 such that for all ∆ : ∥∆∥ < M , the system remains globally exponentially stable.

2.4 Constant Norm & Constant Speed Systems

The system ẋ = Ax is called constant norm if, for every trajectory x, ∥x(t)∥ is constant. The system is
called constant speed if for every trajectory x, ∥ẋ(t)∥ is constant.

1. Find the (general) conditions on A under which the system is constant norm.

2. Find the (general) conditions on A under which the system is constant speed.

3. Is every constant norm system a constant speed system? Provide a proof or counterexample.

4. Is every constant speed system a constant norm system? Provide a proof or counterexample.

2.5 Separating Hyperplane for a Linear Dynamical System

Let c ∈ Rn be a nonzero vector. The hyperplane passing through 0 defined by c is the set,

Hc = {x ∈ Rn : c⊤x = 0} ⊆ Rn. (9)

Consider a continuous-time, LTI system ẋ(t) = Ax(t), where A ∈ Rn×n and x ∈ Rn. A hyperplane Hc

passing through zero is said to be a separating hyperplane for this system if no trajectory of the system ever
crosses the hyperplane. That is, if c⊤φ(t, t0, x0) < 0 for some t ∈ R, it is impossible to have c⊤φ(t′, t0, x0) > 0
for another time t′ ∈ R. Assuming the eigenvalues of A are all distinct, explain how to find all separating
hyperplanes of ẋ(t) = Ax(t). Find the conditions on A under which there are no separating hyperplanes.

3 Optional Problems

3.1 Stability & System Relations

In this problem, we’ll examine how the stability of systems is preserved under coordinate transforms. Here,
we’ll consider an arbitrary (continuous or discrete-time) input-free system with state transition map φ :
T× Rn → Rn, where T = {(t1, t0) ∈ T × T : t1 ≥ t0}.

1. Let φ̂ : T×Rn → Rn be the state transition map of a second, input-free system on Rn. Let T : Rn → Rn

be a linear map. The systems φ and φ̂ are said to be T -related if,

T (φ(t, t0, x0)) = φ̂(t, t0, T (x0)), ∀t ≥ t0 ∈ T , x0 ∈ Rm. (10)

If the systems have the form ẋ = A(t)x and ˙̂x = Â(t)x̂, find sufficient conditions on A and Â such that
the two systems are T -related.

2. Prove that if T is invertible, then the equilibrium xe = 0 of ẋ(t) = A(t)x(t) is (Lyapunov/asymptotical-
ly/exponentially) stable if and only if the equilibrium x̂e = 0 of ˙̂x(t) = Â(t)x̂(t) is (Lyapunov/asymp-
totically/exponentially) stable.

3. Suppose now that T is a surjective linear mapping from Rn → Rk. What can you conclude about the
stability of x̂e = 0 from the stability of xe = 0? What about the case where T is injective? Back up
your claims with proofs or counterexamples.
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