CDS 131 Homework 3: Transforms & Stability in State Space

Winter 2025
Due 1/27 at 11:59 PM

Instructions
This homework is divided into three parts:

1. Optional Ezercises: the exercises are entirely optional but are recommended to be completed before
looking at the problems. They consist of easier, more computational questions to help you get a feel for
the material.

2. Required Problems: the problems are the required component of the homework, and might require more
work than the exercises to complete.

3. Optional Problems: the optional problems are some additional, recommended problems - some of these
might go a little beyond the standard course material.

All you need to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 Transforms & Transition Matrices

The Laplace transform offers yet another way of computing the state transition matrix. For a continuous-
time, LTI representation (A, B,C, D), the matrix exponential is computed exp(At) = L71[(s] — A)~H)](¢),
for all ¢ > 0. In this problem, we’ll consider an analogue in discrete-time, and use both the continuous and
discrete formulas to compute some transition matrices.

1. Show that the state transition matrix of a discrete-time, LTI representation (A, B, C, D) is computed,

AR = Z712(20 — A)7Y[K], VEk > 0. (1)

2. Using the transform formulas, compute the continuous and discrete-time transition matrices associated
to the matrix,

A= {_01 _12} . @)

Comment on the benefits and drawbacks of this method of computing the transition matrix. You may
use a symbolic calculator to compute the inverse of (sI — A).

1.2 Transfer Functions & Change of Basis

Consider a linear, time-invariant system representation (A, B,C, D). Recall that under a change of state
coordinates, z = Tz, the representation transforms to (TAT~', TB,CT~!, D). Does the transfer function
associated to the system representation change under a change of state coordinates? Provide a proof or
counterexample to back up your answer.



1.3 Analytic Functions

Recall that a given function f : Q — C, where Q2 C C is open in C, is an analytic function if it is (complex)
differentiable in a neighborhood of every point of C. For each of the scalar functions of s € C,

il g) = e g) = (571) s) — sI — -1

determine the largest subset of C on which the function is analytic.

2 Required Problems

2.1 A Simple SISO Transfer Function
1. Consider a continuous-time SISO, LTI system representation (A, B,C, D),

0 1 0 0 0
0 0 1 0 0
A= B =
0 0 0 1 (4)
—ap —aip ... —Qnp—2 —0Aap-—1 1
C = [CO c1 ... Cp—2 Cn—l] D= O,

Show that the transfer function of such a system is computed,

ﬁ(s) _ Cne1S" V4 pas" 2+ .+ 15+ ¢
$" 4 ap_18"" 1+ ... +a15+ ag

()

2. Let ¢(s) = 18" 1 +... + ¢o and d(s) = s™ + ... + ap. If sq satisfies c(sp) = 0 and d(sg) # 0, show for
u(t) = upe*°t, ug € R, the zero-state response of the system does not contain a term involving e*o?.

3. Suppose sg is not an eigenvalue of A and that ¢(sg) = 0. Show that the matrix,

A—slI B
C D\’

is singular at s = sg. Hint: determinant.

2.2 A Skew-Symmetric Stability Condition

Consider the input-free linear, time-varying system z(t) = A(t)z(t), where A(-) € PC(R,R™*"). Show that
if A(t) is skew-symmetric for all t € R (A(t) = —AT (t)), then z, = 0 is a Lyapunov stable equilibrium point.
2.3 Robustness of Exponential Stability

In this problem, we’ll show that exponential stability is robust under small perturbations.

1. (% Hard—you can skip this subproblem if you can’t find a solution after giving it some thought)
Consider a family of polynomials parameterized by ¢,

f(s,t) = an(t)s™ + ... + a1(t)s + ap(t), (7)

where each a; : R — R is continuous. Prove there exist continuous functions A\; : R — C, i = 1,...,n,
such that for all ¢y € R, each \;(tg) corresponds to a root of f(s,%o).

2. Prove there exists a continuous function spec : R"*™ — C", mapping a matrix A € R™*" to a vector
containing its eigenvalues.



3. Let A € R"*". Consider the perturbed systems,
z(t) = (A+ A)x(t), z[k+1]=(A+ A)zx[k], (8)
where A € R"*™. Suppose each system is globally exponentially stable for A = 0. In each case, prove

there exists an M > 0 such that for all A : ||A|| < M, the system remains globally exponentially stable.

2.4 Constant Norm & Constant Speed Systems

The system & = Ax is called constant norm if, for every trajectory x, ||z(t)|| is constant. The system is
called constant speed if for every trajectory z, ||&(¢)|| is constant.

1. Find the (general) conditions on A under which the system is constant norm.
2. Find the (general) conditions on A under which the system is constant speed.
3. Is every constant norm system a constant speed system? Provide a proof or counterexample.

4. Is every constant speed system a constant norm system? Provide a proof or counterexample.

2.5 Separating Hyperplane for a Linear Dynamical System
Let ¢ € R™ be a nonzero vector. The hyperplane passing through 0 defined by c is the set,

H.={z€R":c'2 =0} CR™ (9)

Consider a continuous-time, LTT system #(t) = Axz(t), where A € R™*"™ and z € R™. A hyperplane H,
passing through zero is said to be a separating hyperplane for this system if no trajectory of the system ever
crosses the hyperplane. That is, if ¢ ¢(t,t9, 79) < 0 for some ¢ € R, it is impossible to have ¢ (¢, g, 79) > 0
for another time ¢’ € R. Assuming the eigenvalues of A are all distinct, explain how to find all separating
hyperplanes of @(t) = Az(t). Find the conditions on A under which there are no separating hyperplanes.

3 Optional Problems

3.1 Stability & System Relations

In this problem, we’ll examine how the stability of systems is preserved under coordinate transforms. Here,
we’'ll consider an arbitrary (continuous or discrete-time) input-free system with state transition map ¢ :
T x R" — R", where T = {(t1,t0) € T X T :t1 > to}.

1. Let ¢ : TxR™ — R™ be the state transition map of a second, input-free system on R". Let T : R” — R"
be a linear map. The systems ¢ and ¢ are said to be T-related if,

T((p(t,to,l’o)) = (ﬁ(t,to,T(xo)), Vt>tg €T, xo € R™. (10)

If the systems have the form & = A(t)z and & = A(t)&, find sufficient conditions on A and A such that
the two systems are T-related.

2. Prove that if T"is invertible, then the equilibrium z. = 0 of @(t) = A(t)z(?) is (Lyapunov/asymptotical-
ly/exponentially) stable if and only if the equilibrium Z. = 0 of Z(t) = A(¢)Z(¢) is (Lyapunov/asymp-
totically /exponentially) stable.

3. Suppose now that 7' is a surjective linear mapping from R” — R*. What can you conclude about the
stability of . = 0 from the stability of . = 07 What about the case where T is injective? Back up
your claims with proofs or counterexamples.
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