
CDS 131 Homework 4: Lyapunov & I/O Stability

Winter 2025

Due 2/3 at 11:59 PM

Instructions

This homework is divided into three parts:

1. Optional Exercises: the exercises are entirely optional but are recommended to be completed before
looking at the problems. They consist of easier, more computational questions to help you get a feel for
the material.

2. Required Problems: the problems are the required component of the homework, and might require more
work than the exercises to complete.

3. Optional Problems: the optional problems are some additional, recommended problems - some of these
might go a little beyond the standard course material.

All you need to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 Some System Norm Computations

1. Consider a SISO, LTI system with input u(·), output y(·), and transfer function,

Ĝ(s) =
s+ 2

4s+ 1
, (1)

Compute the norm sup∥u∥∞=1 ∥y∥∞ and find an input signal u(·) achieving this norm.

2. Compute the 1-norm of the impulse response map corresponding to the transfer function,

Ĝ(s) =
1

τs+ 1
, τ > 0. (2)

1.2 Delay-Invariant Norms

Recall that the transfer function for a time delay of time τ is D̂(s) = e−sτ . A norm ∥·∥ on the space
of transfer functions is delay-invariant if, for every transfer function Ĝ with ||Ĝ|| < ∞ and every τ > 0,
||D̂Ĝ|| = ||Ĝ||. Is the 2-norm delay invariant? What about the ∞-norm? You may provide answers in the
scalar (SISO) case.

1.3 Evaluating Potential Norms

Consider the set C1(R,R) of continuously differentiable, scalar signals. Which of the following qualifies as a
norm on C1(R,R)?

supt∈R |u̇(t)|, |u(0)|+ supt∈R |u̇(t)|, max{supt∈R |u(t)|, supt∈R |u̇(t)|}, supt∈R |u(t)|+ supt∈R |u̇(t)|. (3)
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2 Required Problems

2.1 Lyapunov Certificates of Robust Stability

When analyzing the stability of linear, time-invariant systems, we assumed that we had perfect knowledge
of the matrix A determining the system’s dynamics. In this problem, we’ll introduce uncertainty into the
system, and show that we can use the Lyapunov equation to get a certificate of robust stability. Consider an
uncertainty set ∆⃗, defined as the convex hull of a finite collection {∆1, ...,∆k}, where ∆i ∈ Rn×n,

∆⃗ = conv{∆1, ...,∆k} =

{
k∑

i=1

λi∆i :

k∑
i=1

λi = 1, 0 ≤ λi ≤ 1, λi ∈ R

}
⊆ Rn×n. (4)

Consider an unforced, uncertain system ẋ(t) = (A + ∆)x(t), where ∆ ∈ ∆⃗ is some unknown parameter.

If xe = 0 is exponentially stable for ẋ(t) = (A + ∆)x(t) for all ∆ ∈ ∆⃗, we say that xe = 0 is robustly
exponentially stable. In this problem, we’ll find a certificate for robust exponential stability using linear
matrix inequalities (LMIs). Let Sn represent the set of n × n real, symmetric matrices and V represent
a finite-dimensional vector space. A linear matrix inequality in X ∈ V is a matrix inequality of the form
F (X) ⪯ Q, where F : V → Sn is a linear map, Q ∈ Sn, and F (X) ⪯ Q denotes the positive semidefinite
constraint 0 ⪯ Q − F (X). The linear matrix inequality F (X) ⪯ Q has a solution if there exists an X ∈ V
for which F (X) ⪯ Q.

1. Let’s begin by synthesizing an LMI to identify a Lyapunov function for the unforced system ẋ(t) =
Ax(t) without uncertainty. Show that A is Hurwitz if and only if the pair of linear matrix inequalities,

I ⪯ P, A⊤P + PA ⪯ −I, (5)

in a symmetric matrix P ∈ Sn, has a solution.

2. Now, let’s introduce the uncertainty set ∆⃗ = conv{∆1, ...,∆k}. Prove there exists a finite collection of
linear matrix inequalities for which the existence of a solution to the inequalities implies the origin of
ẋ = (A+∆)x, ∆ ∈ ∆⃗ is robustly exponentially stable.

3. Now, let’s introduce control into the system. Consider the uncertain state equation,

ẋ = (A+∆)x+Bu, (6)

where u ∈ Rm is a control input and ∆ ∈ ∆⃗ = conv{∆1, ...,∆k}. Devise a linear matrix inequality
method for computing a matrix K ∈ Rm×n for which the control law u = Kx renders the equilibrium
xe = 0 of ẋ = (A+∆)x+Bu robustly exponentially stable. Produce an example of (A,B, ∆⃗) for which
your method will be successful, and an example for which it will be unsuccessful. Hints: Your LMIs
do not have to directly give you K. How are the eigenvalues of A and A⊤ related? Is an LMI allowed
to have a product of two unknown variables?

2.2 Some Special Lyapunov Equations

In this problem, we’ll analyze some special cases of the continuous-time Lyapunov equation. Consider the
continuous-time, SISO LTI system, ẋ = Ax+Bu, y = Cx, for which x ∈ Rn, u ∈ R, and y ∈ R.

1. Suppose there exists a positive definite matrix P ∈ Sn, P ≻ 0, and a constant α ∈ R, for which

A⊤P + PA ≺ αP. (7)

Which region in the complex plane do the eigenvalues of A lie in? Write your answer in terms of α.

2. Let’s design a basic feedback controller using the result of part (1). Suppose Equation (7) holds with
α = 0, and in addition, that PB = C⊤. Show that, for a feedback control law u = −ky, k ≥ 0, the
equilibrium xe = 0 of the closed-loop system ẋ = Ax−Bky is globally exponentially stable.
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3. Now, suppose A ∈ Rn×n and P ∈ Sn, P ≻ 0 satisfy the equality A⊤P + PA = 0. Which region of the
complex plane do the eigenvalues of A lie in?

4. Assuming again that PB = C⊤, does the equality A⊤P +PA = 0 still guarantee exponential stability
for a control law u = −ky, k ≥ 0? If not, what additional conditions would you need?

2.3 LMI Ellipsoid Identification

Consider an unforced, LTI system ẋ(t) = Ax(t), x ∈ Rn. A forward invariant set for this system is a set
S ⊆ Rn for which x0 ∈ S implies φ(t, t0, x0) ∈ S for all t ≥ t0, where φ is the (unforced) state transition
map. In this problem, we’ll develop a technique for certifying the invariance of certain sets.

1. An ellipsoid in Rn, centered at zero, can be defined in two ways:

E1 = {x ∈ Rn : x⊤Sx ≤ 1}, where S ≻ 0, (8)

E2 = {x ∈ Rn : x = My, ∥y∥2 ≤ 1}, where detM ̸= 0. (9)

Given S for E1, explain how to find M for E2 such that E1 = E2. Given M for E2, explain how to find
S for E1 such that E1 = E2. Support your claims with proofs.

2. Using a collection of linear matrix inequalities, explain how to find an ellipsoid E ⊆ Rn, centered at
0, that is forward invariant for ẋ = Ax and satisfies z(i) ∈ E , i = 1, ...,m and w(j) /∈ E , j = 1, ..., p,
for z(i), w(j) some fixed points in Rn. Note: you may leave your solution in terms of strict inequalities
(e.g. ≺, <) for the purposes of this problem. For computer implementation, strict inequalities are not
realizable. Think about how you can re-pose your problem with non-strict inequalities!

3. Produce a simple example for which your method from part (2) has a solution, and an example for
which it does not. You may present your answer in the form of a simple sketch or in the form of
problem data.

2.4 Finite Impulse Response Systems

In this problem, we’ll consider a special type of discrete-time system, called a finite impulse response (FIR)
system. A SISO discrete-time, LTI system with impulse response map H[·] : Z → R is said to be finite
impulse response of horizon N if for all k > N , H[k] = 0. That is,

H[0] = h0, H[1] = h1, ..., H[N ] = hN , H[N + k] = 0, ∀k ≥ 1, (10)

where h0, ..., hN ∈ R are real constants.

1. Prove that the transfer function Ĥ of a SISO, FIR system, must have all of its poles at the origin.
Calculate an upper bound on the degree of the denominator of Ĥ in terms of the FIR horizon.

2. Does a (SISO) transfer function Ĝ ∈ RH∞ with all poles at the origin correspond to an FIR system?
Provide a proof or counterexample to support your claim.

3. Let’s consider input signals of length M ∈ Z≥0—input signals which are zero for all integers k /∈ [0,M ].
Calculate—as completely as you can—the 2-norm to 2-norm gain of a SISO FIR system with horizon
N , over the set of length M inputs,

sup
∥u∥ℓ2

=1, len(u)=M

∥H ∗ u∥ℓ2 . (11)

Prove there exists a length M input u achieving the supremum. You shouldn’t have to use the table of
system norms to answer this question!

4. For the same system as above, calculate the infimum,

inf
∥u∥ℓ2

=1, len(u)=M
∥H ∗ u∥ℓ2 . (12)

Prove there exists a length M input u achieving the infimum. When (if ever) is this infimum zero?
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2.5 Column-Wise Separability

A functional is a map from a set into the reals, R. Consider a space of maps, F = {Ĝ : Ω → Cp×m, Ω ⊆ C}.
Let Ĝi denote the i’th column of an element Ĝ ∈ F . A functional f : F → R is column-wise separable if
there exist functionals f1, ..., fm for which

f(Ĝ) =

m∑
i=1

fi(Ĝi), ∀ Ĝ ∈ F . (13)

That is, a functional is column-wise separable if it can be equivalently written via a sum of a collection of
functionals, each acting on a column of Ĝ ∈ F .

1. Consider F = {Ĝ : Ω → Cp×m, Ω ⊆ C}. Show that the functional f : F → R mapping Ĝ ∈ F to the
square of its Frobenius norm at a point s0 ∈ Ω, f(Ĝ) = ||Ĝ(s0)||2F , is column-wise separable.

2. Now, suppose F = RH2, with elements of F being rational functions of finite H2-norm taking values in
Cp×m. Consider the functional f : F → R taking Ĝ ∈ F to the square of its H2-norm, f(Ĝ) = ||Ĝ||22.
Is this functional column-wise separable? What about the functional taking Ĝ to its H∞-norm?

3. Suppose you want to compute a functional of a large matrix-valued function on a computer. Why might
it be advantageous for the functional to be column-wise separable? Comment on the implications of
your answer for the H2 and H∞-norms.

3 Optional Problems

3.1 The Sylvester Equation

In class, we examined the continuous-time Lyapunov equation. This equation is an instance of a more general
type of matrix equation called a Sylvester equation. A matrix equation of the form,

MX +XN = Q, (14)

in an unknown matrix X, is said to be a Sylvester equation in X. In this problem, we’ll analyze the set of
Sylvester equations using an algebraic approach different to that which we’ve considered so far.

1. For matrices M ∈ Rn×n and N ∈ Rn×n, the Kronecker product of M and N , denoted M ⊗N , is the
matrix

M ⊗N :=

m11N . . . m1nN
...

. . .
...

mn1N . . . mnnN

 . (15)

Let X = [x1, ..., xn] ∈ Rn×n and Q = [q1, .., qn] ∈ Rn×n, where each xi and qi denotes a column of X
and Q, respectively. Define,

vec(X) =
[
x⊤
1 . . . x⊤

n

]⊤ ∈ Rn2

(16)

vec(Q) =
[
q⊤1 . . . q⊤n

]⊤ ∈ Rn2

. (17)

Using the Kronecker product, prove there exists a matrix A ∈ Rn2×n2

for which

A vec(X) = vec(Q) ⇐⇒ MX +XN = Q. (18)

2. Suppose the eigenvalues of M are λ1, ..., λn and the eigenvalues of N are µ1, ..., µn. Show that the
eigenvalues of M ⊗N are the n2 numbers λiµj , (i, j) ∈ {1, ..., n}2.

3. Using your answers to parts (1) and (2), show there exists a unique solution X to the Sylvester equation
MX +XN = Q if and only if λi(M) + λj(N) ̸= 0 for all (i, j) ∈ {1, ..., n}2. Specialize this result to
conclude the CTLE test for a Hurwitz matrix.
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