CDS 131 Homework 4: Lyapunov & /O Stability

Winter 2025
Due 2/3 at 11:59 PM

Instructions
This homework is divided into three parts:

1. Optional Ezercises: the exercises are entirely optional but are recommended to be completed before
looking at the problems. They consist of easier, more computational questions to help you get a feel for
the material.

2. Required Problems: the problems are the required component of the homework, and might require more
work than the exercises to complete.

3. Optional Problems: the optional problems are some additional, recommended problems - some of these
might go a little beyond the standard course material.

All you meed to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 Some System Norm Computations
1. Consider a SISO, LTI system with input u(-), output y(-), and transfer function,
A s+2
)= 1
Compute the norm supy,; —1 ||y, and find an input signal u(-) achieving this norm.
2. Compute the 1-norm of the impulse response map corresponding to the transfer function,

A 1

Gs) = ——. 7> 0. 2)

1.2 Delay-Invariant Norms

Recall that the transfer function for a time delay of time 7 is D(s) = e *". A norm ||-| on the space

of transfer functions is delay-invariant if, for every transfer function G with ||G|| < oo and every 7 > 0,
[|DG|| = ||G]]- Is the 2-norm delay invariant? What about the co-norm? You may provide answers in the
scalar (SISO) case.

1.3 Evaluating Potential Norms

Consider the set C*(R,R) of continuously differentiable, scalar signals. Which of the following qualifies as a
norm on C(R,R)?

supgeg [4(t)],  [u(0)] +sup,eg [@(t)], max{sup,eg [u(t)], sup,er [¢(t)[},  super [u(t)] + sup,er [@(t)]. (3)



2 Required Problems

2.1 Lyapunov Certificates of Robust Stability

When analyzing the stability of linear, time-invariant systems, we assumed that we had perfect knowledge
of the matrix A determining the system’s dynamics. In this problem, we’ll introduce uncertainty into the
system, and show that we can use the Lyapunov equation to get a certificate of robust stability. Consider an
uncertainty set A, defined as the convex hull of a finite collection {A1,..., A}, where A, € R"*"

k k
& = COHV{Ah...,Ak} = {Z)\ZAZ : Z)\Z = 170 S )\z S 1, )\2 € R} Q Rnxn. (4)

=1 =1

Consider an unforced, uncertain system @(t) = (A + A)z(t), where A € A is some unknown parameter.
If z, = 0 is exponentially stable for &(t) = (A + A)z(t) for all A € A, we say that z, = 0 is robustly
exponentially stable. In this problem, we’ll find a certificate for robust exponential stability using linear
matriz inequalities (LMIs). Let S™ represent the set of n x n real, symmetric matrices and V represent
a finite-dimensional vector space. A linear matrix inequality in X € V is a matrix inequality of the form
F(X) 2 Q, where F : V — S" is a linear map, @ € S", and F(X) =< @ denotes the positive semidefinite
constraint 0 <= @ — F(X). The linear matrix inequality F'(X) < @ has a solution if there exists an X € V
for which F(X) < Q.

1. Let’s begin by synthesizing an LMI to identify a Lyapunov function for the unforced system @(t) =
Azx(t) without uncertainty. Show that A is Hurwitz if and only if the pair of linear matrix inequalities,

I<P ATP+PA=< I, (5)
in a symmetric matrix P € S”, has a solution.

2. Now, let’s introduce the uncertainty set A= conv{Ay,...,Ar}. Prove there exists a finite collection of
linear matrix inequalities for which the existence of a solution to the inequalities implies the origin of
= (A+ Az, A € A is robustly exponentially stable.

3. Now, let’s introduce control into the system. Consider the uncertain state equation,
& = (A+ A)z + Bu, (6)

where u € R™ is a control input and A € A= conv{Ay,...,Ar}. Devise a linear matrix inequality
method for computing a matrix K € R™*™ for which the control law u = K« renders the equilibrium
ze = 0 of & = (A+ A)xz+ Bu robustly exponentially stable. Produce an example of (4, B, &) for which
your method will be successful, and an example for which it will be unsuccessful. Hints: Your LMIs
do not have to directly give you K. How are the eigenvalues of A and AT related? Is an LMI allowed
to have a product of two unknown variables?

2.2 Some Special Lyapunov Equations

In this problem, we’ll analyze some special cases of the continuous-time Lyapunov equation. Consider the
continuous-time, SISO LTI system, & = Az + Bu, y = Cz, for which x € R", u € R, and y € R.

1. Suppose there exists a positive definite matrix P € S”, P > 0, and a constant « € R, for which
ATP+ PA < aP. (7)
Which region in the complex plane do the eigenvalues of A lie in? Write your answer in terms of a.

2. Let’s design a basic feedback controller using the result of part (1). Suppose Equation (7) holds with
a = 0, and in addition, that PB = C'". Show that, for a feedback control law v = —ky,k > 0, the
equilibrium z, = 0 of the closed-loop system & = Ax — Bky is globally exponentially stable.



3. Now, suppose A € R"*"™ and P € S", P 0 satisfy the equality AT P + PA = 0. Which region of the
complex plane do the eigenvalues of A lie in?

4. Assuming again that PB = C'T, does the equality AT P+ PA = 0 still guarantee exponential stability
for a control law u = —ky, k > 0?7 If not, what additional conditions would you need?

2.3 LMI Ellipsoid Identification

Consider an unforced, LTI system &(t) = Axz(t), € R™. A forward invariant set for this system is a set
S C R” for which z¢ € S implies (t,tg,z9) € S for all t > tg, where ¢ is the (unforced) state transition
map. In this problem, we’ll develop a technique for certifying the invariance of certain sets.

1. An ellipsoid in R™, centered at zero, can be defined in two ways:
E1={xeR":z"Sx <1}, where S > 0, (8)
E ={zeR" 2= My,|yl, <1}, where det M # 0. 9)

Given S for &1, explain how to find M for & such that & = &. Given M for &, explain how to find
S for & such that & = &;. Support your claims with proofs.

2. Using a collection of linear matrix inequalities, explain how to find an ellipsoid £ C R"™, centered at
0, that is forward invariant for # = Az and satisfies 2V € £, i = 1,...,m and w9 ¢ &, j =1,...,p,
for (9, w7 some fixed points in R™. Note: you may leave your solution in terms of strict inequalities
(e.g. <,<) for the purposes of this problem. For computer implementation, strict inequalities are not
realizable. Think about how you can re-pose your problem with non-strict inequalities!

3. Produce a simple example for which your method from part (2) has a solution, and an example for
which it does not. You may present your answer in the form of a simple sketch or in the form of
problem data.

2.4 Finite Impulse Response Systems

In this problem, we’ll consider a special type of discrete-time system, called a finite impulse response (FIR)
system. A SISO discrete-time, LTI system with impulse response map H|[-] : Z — R is said to be finite
impulse response of horizon N if for all K > N, H[k] = 0. That is,

H[0] = ho, H[1] = hq, ..., HIN]=hn, HIN+k] =0, Vk > 1, (10)
where hy, ..., Ay € R are real constants.

1. Prove that the transfer function H of a SISO, FIR system, must have all of its poles at the origin.
Calculate an upper bound on the degree of the denominator of H in terms of the FIR horizon.

2. Does a (SISO) transfer function G € RHo with all poles at the origin correspond to an FIR system?
Provide a proof or counterexample to support your claim.

3. Let’s consider input signals of length M € Z>o—input signals which are zero for all integers k ¢ [0, M].
Calculate—as completely as you can—the 2-norm to 2-norm gain of a SISO FIR system with horizon
N, over the set of length M inputs,

sup | H *ull, - (11)
”“”22:11 len(u)=M

Prove there exists a length M input u achieving the supremum. You shouldn’t have to use the table of
system norms to answer this question!

4. For the same system as above, calculate the infimum,

inf Hxull, . b
lluullp, =1, len(u)=M I e, (12)

Prove there exists a length M input u achieving the infimum. When (if ever) is this infimum zero?



2.5 Column-Wise Separability

A functional is a map from a set into the reals, R. Consider a space of maps, F = {G:Q—Crm QCCl.
Let G; denote the i’th column of an element G € F. A functional f : F — R is column-wise separable if
there exist functionals fi, ..., fi, for which

FG) =D fi(Gi), VG eF. (13)

=1

That is, a functional is column-wise separable if it can be equivalently written via a sum of a collection of
functionals, each acting on a column of G € F.

1. Consider F = {é 1 Q — CPm, Q C C}. Show that the functional f : 7 — R mapping G € F to the
square of its Frobenius norm at a point so € Q, f(G) = [|G(80)||%, is column-wise separable.

2. Now, suppose ' = RH,, with elements of F being rational functions of finite Ho-norm taking values in
Crx™. Consider the functional f : F — R taking G € F to the square of its Hy-norm, f(G) = ||G|[3.
Is this functional column-wise separable? What about the functional taking G to its Hoo-norm?

3. Suppose you want to compute a functional of a large matrix-valued function on a computer. Why might
it be advantageous for the functional to be column-wise separable? Comment on the implications of
your answer for the Ho and H,-norms.

3 Optional Problems

3.1 The Sylvester Equation

In class, we examined the continuous-time Lyapunov equation. This equation is an instance of a more general
type of matrix equation called a Sylvester equation. A matrix equation of the form,

MX + XN = Q, (14)

in an unknown matrix X, is said to be a Sylvester equation in X. In this problem, we’ll analyze the set of
Sylvester equations using an algebraic approach different to that which we’ve considered so far.

1. For matrices M € R™"*"™ and N € R"*", the Kronecker product of M and N, denoted M ® N, is the
matrix

mllN mlnN
M®N = : : . (15)

Mp1N ... MmpN

Let X = [z1,...,2,) € R"™™ and Q = [¢q1, .., ¢n] € R™*™, where each z; and ¢; denotes a column of X
and @, respectively. Define,

vee(X) = [z{ ... :ET}T : (16)

vee(Q) = [¢f ... qf]" eR™. (17)
Using the Kronecker product, prove there exists a matrix A € R™ " for which
Avec(X) =vec(Q) <= MX + XN =Q. (18)
2. Suppose the eigenvalues of M are Aq,..., A\, and the eigenvalues of N are uq, ..., . Show that the
eigenvalues of M ® N are the n? numbers \;p;, (4,7) € {1,...,n}>.

3. Using your answers to parts (1) and (2), show there exists a unique solution X to the Sylvester equation
MX + XN = Q if and only if \;(M) + X\;(N) # 0 for all (i,j) € {1,...,n}?. Specialize this result to
conclude the CTLE test for a Hurwitz matrix.
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