
CDS 131 Homework 8: Feedback Systems & Internal Stability

Winter 2025

Due 3/5 at 11:59 PM

Instructions

This homework is divided into three parts:

1. Optional Exercises: the exercises are entirely optional but are recommended to be completed before
looking at the problems. They consist of easier, more computational questions to help you get a feel for
the material.

2. Required Problems: the problems are the required component of the homework, and might require more
work than the exercises to complete.

3. Optional Problems: the optional problems are some additional, recommended problems - some of these
might go a little beyond the standard course material.

All you need to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 A Simple Feedback Loop

In this problem, we’ll show that a simple feedback control system can be recast in the general feedback
arrangement. Consider the simple feedback system,

Here, the blocks K and P are continuous-time, LTI systems representing the controller and plant, respec-
tively. The signals u(t) ∈ Rm and v(t) ∈ Rp together form the controlled output, while the signals d(t) ∈ Rm

and n(t) ∈ Rp, which represent a plant disturbance and a measurement noise, respectively, form the exoge-
nous input w. Each circle represents a summing junction, in which signals entering the junction are added
to form the signal leaving the junction.

Let’s rewrite the system in a general feedback arrangement. Suppose P has a state space representation
(A,B,C,D) and K has a state space representation (AK , BK , CK , DK). For z = (v, u) and w = (d, n),
identify the linear, time-invariant system representation G = (Ã, B̃, C̃, D̃) for which the feedback system
above is equivalent to the general feedback arrangement interconnecting G and K.
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2 Required Problems

2.1 Well-Posedness of a Feedback Interconnection

In this problem, we’ll consider a feedback interconnection:

in which S and T are continuous-time, LTI systems with state and output equations,

S :

{
ẋ = Ax+B1u+B2w1

w2 = Cx+D1u+D2w1,
T :


ż = Fz +G1v +G2w2

w1 = H1z

y = H2z + Jw2.

(1)

1. Assuming the dimensions of each signal are compatible, express the feedback interconnection as a single
continuous-time, LTI system (Ã, B̃, C̃, D̃) with input ũ = (u, v), state x̃ = (x, z), and output y. What
additional assumptions (if any) are required for the feedback interconnection to be well-posed?

2. If the systems S and T were now discrete-time, LTI systems, would anything change about the system
representation (Ã, B̃, C̃, D̃) of the feedback interconnection? Explain why or why not.

2.2 Stabilizability & Detectability Under Interconnection

In this problem, we’ll consider how stabilizability and detectability are affected by system interconnections.
Recall that in a block diagram, a circle represents a summing junction; a summing junction takes in a
number of signals and outputs their sum. It is implicit that all signals entering a summing junction are of
the same dimension.

1. Consider the parallel interconnection:

where the systems G1 = (A1, B1, C1, D1) and G2 = (A2, B2, C2, D2) are continuous-time, LTI systems.
Assuming each signal is of a compatible dimension, derive the state and output equations of the parallel
interconnection using a state vector x = (x1, x2) (where x1 is the state of G1 and x2 the state of G2),
input vector u, and output vector y.

2. Show that the transfer function from u to y in the parallel interconnection is Ĝ1+ Ĝ2, where Ĝ1 is the
transfer function of G1 and Ĝ2 is the transfer function of G2.

3. If G1, G2 are stabilizable and detectable, is the parallel interconnection system from part (1) is stabi-
lizable and detectable? Provide a proof or a counterexample to support your claim. Hint: cancellation.

4. Consider the cascade interconnection:
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where G1 = (A1, B1, C1, D1) and G2 = (A2, B2, C2, D2) are continuous-time, LTI systems. Assuming
each signal is of compatible dimension, derive the state and output equations of the cascade intercon-
nection using a state vector x = (x1, x2), input vector u, and output vector y.

5. Show that the transfer function from u to y in the cascade interconnection is Ĝ2 · Ĝ1, where Ĝ1 is the
transfer function of G1 and Ĝ2 is the transfer function of Ĝ2.

6. If G1, G2 are stabilizable and detectable, is the cascade interconnection system from part (4) is stabi-
lizable and detectable? Provide a proof or a counterexample to support your claim.

2.3 The Small Gain Theorem

Consider the following feedback interconnection, in which H and ∆ are continuous-time, LTI systems whose
transfer functions Ĥ, ∆̂ belong to RH∞.

In the following, you may assume that H and ∆ have stabilizable and detectable state space realizations,
and that the feedback interconnection is well-posed.

1. Show that if Ĝ, Ĥ ∈ RH∞ are transfer functions of compatible dimensions, then ĜĤ ∈ RH∞. Hint:
remember that these transfer functions aren’t necessarily SISO!

2. Show that the transfer function from (d1, d2) 7→ (v1, v2) belongs to RH∞ if and only if (I − Ĥ∆̂)−1 ∈
RH∞. Hint: how can you use well-posedness to justify existence of the inverse?

3. Recall that the feedback interconnection above is internally stable if the transfer function from (d1, d2) 7→
(v1, v2) belongs to RH∞. Argue that the feedback interconnection above is internally stable if the func-
tion det(I − Ĥ(s)∆̂(s)) has no zeros in the closed right-half plane, C+ = {s ∈ C : Re(s) ≥ 0}.

4. Show that ||∆̂||∞ < 1/γ and ||Ĥ||∞ ≤ γ implies internal stability, where ∥·∥∞ is the H∞-norm. Give
an intuitive explanation as to why this result is true. Hints: you may as a fact that the H∞-norm of
a transfer function Ĝ ∈ RH∞ is equivalently calculated ||Ĥ||∞ = sups∈C+

σmax(Ĝ(s)).

The result proven in part (4) is one direction of the famous small gain theorem, which states that the feedback
interconnection above is internally stable for all ∆̂ ∈ RH∞ satisfying ||∆̂|| < 1/γ if and only if ||Ĥ||∞ ≤ γ.
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3 Optional Problems

3.1 The Structured Singular Value

⋆ This problem is hard, and requires some sophisticated arguments. Give it a try!
Above, we derived a piece of the small gain theorem, which is useful in deriving tests for robust stability
using the H∞-norm of a system ∆ representing uncertainty. In the case where the uncertainty has a certain
structure, however, we can come up with less conservative tests for robust stability! The (complex) structured
singular value is a function from the set of n × n complex matrices to the reals that helps us understand
stability in the case of structured uncertainty. In this problem, we will study its basic properties.

The first step towards defining the structured singular value is to define a set of matrices ∆⃗ ⊆ Cn×n. Let
r1, ..., rS and m1, ...,mF be positive integers for which

∑S
i=1 ri +

∑F
j=1 mj = n. Define a set ∆⃗ ⊆ Cn×n as

∆⃗ := {blkdiag(δ1Ir1 , ..., δSIrS ,∆S+1, ...,∆S+F ) : δi ∈ C, ∆s+j ∈ Cmj×mj}, (2)

where Ik represents the k× k identity matrix. In short, ∆⃗ is the set of block diagonal matrices with repeated
scalar blocks of dimensions ri × ri (these are the blocks δiIri) and and full blocks of dimensions mj × mj

(these are the blocks ∆S+j). Given a matrix M ∈ Cn×n and a set ∆⃗ ⊆ Cn×n of the form above, one defines
the structured singular value of M , µ∆⃗(M), as follows.

Definition 1 (Structured Singular Value). For M ∈ Cn×n, the structured singular value µ∆⃗(M) is defined,

µ∆⃗(M) :=
1

inf{σmax(∆) : ∆ ∈ ∆⃗ and det(I −M∆) = 0}
, (3)

unless no ∆ ∈ ∆⃗ makes I −M∆ singular, in which case µ∆⃗(M) := 0.

Note that here, we use σmax(M) to denote the maximum singular value of M . Based on this definition,

µ∆⃗(M) depends both on M and on the set ∆⃗. In the following problems, you can assume for simplicity that
one does not encounter the case where no ∆ makes I −M∆ singular.

1. Compute µ∆⃗(M) in the case where ∆⃗ is unstructured, i.e. ∆⃗ = Cn×n. Then, argue that the structure
singular value of a matrix lower bounds its maximum singular value.

2. Recall that the spectral radius of a matrix M ∈ Cn×n is defined ρ(M) := maxi |λi(M)|. Define the set

B∆⃗ = {∆ ∈ ∆⃗ : σmax(∆) ≤ 1}. Prove that the structured singular value can be calculated,

µ∆⃗(M) = sup
∆∈B∆⃗

ρ(∆M). (4)

In the special case where ∆⃗ = {δIn : δ ∈ C}, show that µ∆⃗(M) = ρ(M).

3. Let’s consider some additional methods of computing µ. Define the following subset of Cn×n:

D⃗ = {blkdiag(D1, ..., DS , dS+1Im1 , ..., dS+F ImF
: Di ∈ Cri×ri , Di ≻ 0, dS+j ∈ R>0}. (5)

Prove that, for all D ∈ D⃗,

µ∆⃗(M) = µ∆⃗(D
1
2MD− 1

2 ). (6)

Then, show that,

µ∆⃗(M) ≤ inf
D∈D⃗

σmax(D
1
2MD− 1

2 ). (7)

4. Fix a matrix M ∈ Cn×n. For the set D⃗ introduced in part (3), show that the following set is convex
for each fixed β ∈ R:

{D ∈ D⃗ : σmax(D
1
2MD− 1

2 ) ≤ β}. (8)

Hint: rewrite as a linear matrix inequality. Such inequalities are amenable to implementation in convex
optimization solvers!

5. Conjecture a version of the small gain theorem using the structured singular value.
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3.2 Controller Parameterization for a Stable Plant

In this problem, we’ll study how the stabilizing controller parameterization simplifies when the plant is
already stable. Consider the following system, in which the transfer function Ĝ of G belongs to RH∞:

You may assume that the interconnection is well-posed (i.e. that I −DDK is nonsingular, where D is the
D matrix of the system representation G = (A,B,C,D) and DK that of K = (AK , BK , CK , DK)).

1. Show that the feedback system is internally stable if and only if K̂(I − ĜK̂)−1 ∈ RH∞.

2. Show that for any Q̂ ∈ RH∞ for which (I + ĜQ̂)−1 exists, a controller with a transfer function

K̂(s) = Q̂(s)(I + Ĝ(s)Q̂(s))−1, (9)

internally stabilizes the system. Hint: which transfer function characterizes internal stability?

3. Prove that if K̂ is the transfer function of a stabilizing controller, then there exists a Q̂ ∈ RH∞ for
which K̂(s) = Q̂(s)(I + Ĝ(s)Q̂(s))−1. Hint: how can the condition for well-posedness be used?
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